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Abstract

Masked Autoencoders (MAE) have emerged as a
workhorse of self-supervised representation learning for Vi-
sion Transformers. However, their pixel-reconstruction ob-
Jjective leaves the global layout of the latent space largely
unconstrained. In practice, this can entangle task-relevant
and spurious factors, lead to slow convergence on down-
stream tasks, and diminish the separability of semantic cat-
egories. We propose Adaptive Contrastive Masked Au-
toencoding (AC-MAE), a simple yet effective extension that
blends standard MAE reconstruction with a supervised con-
trastive loss applied to visible patch tokens. A ramp-up
schedule gradually increases the contrastive weight as fea-
tures mature, mitigating early collapse and enabling se-
mantically meaningful structure to emerge. Crucially, our
method introduces only coarse class labels during pretrain-
ing, reducing the need for fine-grained annotation while
still improving downstream performance. On CIFAR-100,
AC-MAE yields substantial gains in classification accu-
racy—up to 12.2% in low-data regimes—by embedding su-
perclass information during pretraining. We further demon-
strate that this approach is well-suited to neuroimaging,
where demographic attributes like sex can provide addi-
tional supervision during pretraining. Applying AC-MAE
to resting-state fMRI data, we observe that incorporating
sex labels during pretraining leads to robust clustering and
strong downstream linear-probing performance.

1. Introduction

Self-supervised learning (SSL) has emerged as a pow-
erful paradigm for visual representation learning, reducing
dependence on labeled data by exploiting structure inher-
ent in the input itself. Recent advances have shown that
carefully designed pretext tasks, such as predicting missing
patches, solving jigsaw puzzles, or contrasting augmented
views, can produce representations that rival or even surpass
those learned via full supervision [9]. These approaches

have been especially impactful in computer vision, where
annotations are expensive and high-dimensional input struc-
ture makes supervision bottlenecks acute.

A common family of SSL methods leverages masked
prediction objectives in Vision Transformers (ViTs). In-
spired by the success of BERT in natural language process-
ing, Masked Autoencoders (MAESs) [7] train models to re-
construct masked image patches from the remaining visi-
ble context. MAEs are conceptually simple, scalable, and
highly effective across standard benchmarks. Their modu-
lar encoder—decoder structure enables efficient training, and
their ability to learn from raw pixels without labels makes
them well-suited to a variety of real-world settings where
annotations are limited or unavailable.

At the same time, a separate line of work in contrastive
learning has demonstrated that global semantic structure
can emerge when models are trained to bring similar sam-
ples closer and push others apart in latent space. Con-
trastive methods like SimCLR [2], MoCo [£&], and Sup-
Con [10] learn discriminative embeddings by encouraging
consistency across views or labels, often leading to more
separable and task-aligned features. While masked autoen-
coding emphasizes fine-grained local reconstruction, con-
trastive learning imposes a strong global constraint on fea-
ture geometry.

In this work, we explore whether these two core ob-
jectives in self-supervised learning—masked reconstruction
and contrastive alignment—can be effectively combined to
improve the structure of learned representations. While
masked autoencoding (MAE) enables models to learn from
raw inputs without labels, it provides no explicit incentive
for the latent space to reflect task-relevant or semantically
meaningful organization. Our central hypothesis is that
lightly injecting supervised contrastive signals during MAE
pretraining can guide the latent geometry without disrupting
the benefits of reconstruction-based learning. Our motiva-
tion is twofold: (1) in general vision tasks, superclass labels
represent a coarse but meaningful signal that is easier to
obtain than fine-grained annotations and may help impose
global structure early on; and (2) in medical and neuroimag-
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Figure 1. AC-MAE introduces coarse label supervision during masked autoencoder (MAE) pretraining via a contrastive head applied to the
encoder representations. Positive pairs are formed using shared superclass labels (e.g., “flowers” or “vehicles”), guiding global structure
in the learned representations. Following convention, in the separate fine-tuning stage, a linear classifier is added on top of the learned
representations, and the encoder is finetuned to predict fine-grained labels (e.g., “poppy”’). We find that adding our contrastive component
improves downstream classification in low-data regimes, reducing the reliance on expensive fine-grained annotation during pretraining.

ing domains, where downstream tasks often benefit from
demographic or clinical information, leveraging sparse aux-
iliary labels (e.g., age or sex) during pretraining may help
bridge the gap between representation learning and deploy-
ment. Our main contributions can be summarized as fol-
lows:

* We propose Adaptive Contrastive Masked Autoen-
coder (AC-MAE), a lightweight extension to MAE
that incorporates a supervised contrastive loss on visi-
ble patch tokens using shared coarse labels (e.g., super-
class, sex), with a ramp-up schedule for the contrastive
weight.

* On CIFAR-100, we demonstrate that incorporating
superclass labels during pretraining yields consistent
gains in classification accuracy, particularly in low-
data regimes (up to 12.2%).

* We extend AC-MAE to resting-state fMRI data and

show that incorporating demographic labels (i.e. sex)
during pretraining improves downstream classification
of sex and Parkinson’s disease.

2. Related Work

Masked Autoencoders. Masked image modeling has
emerged as a powerful self-supervised paradigm for vision
Transformers. In particular, Masked Autoencoders (MAE)
train a ViT encoder-decoder by randomly masking a high
fraction of input patches and reconstructing the missing
pixels, using an asymmetric architecture that enables effi-
cient learning of transferable representations [7]. Numer-
ous extensions build on this idea — for example, Cross-
MAE [5] reduces compute by replacing the full decoder
with a cross-attention mechanism from masked to visible
tokens.. Another variant, MixMAE [12], replaces masked
patches with patches from a different image to form a mixed
input and then decodes both original images, greatly accel-



erating pre-training (by removing mask tokens) while main-
taining strong performance on downstream tasks.

Contrastive self-supervised learning. Contrastive learn-
ing approaches have driven major advances in unsuper-
vised visual representation learning. SimCLR pioneered
an instance discrimination framework that pulls together
two augmented views of the same image while pushing
apart other images, requiring very large batch training but
no memory bank or specialized architectures [2]. Momen-
tum Contrast (MoCo) tackled the memory/batch size issue
by maintaining a moving-averaged encoder and a queue
of negative samples to serve as a consistent dictionary for
contrastive learning [8]. More recent methods eliminate
explicit negatives: BYOL showed that a student network
can learn from a momentum teacher’s representation of
the same image under a different augmentation, matching
state-of-the-art results without any negative pairs [6]. Like-
wise, Barlow Twins avoids collapse by making the cross-
correlation matrix between two distorted view embeddings
as close to identity as possible, thus maximizing agree-
ment on individual features while minimizing redundancy
between features [ | 8]. In addition, a Supervised Contrastive
Learning (SupCon) objective extends these ideas to labeled
data by pulling together embeddings of samples with the
same class label and pushing away different classes, yield-
ing improvements over standard cross-entropy on ImageNet
classification [10].

A number of works have also combined masked model-
ing with contrastive or alignment losses to capture both low-
level reconstruction cues and high-level semantic structure.
For example, CAN fuses Contrastive Learning with Masked
Autoencoding (and even integrates a diffusion-model noise
prediction term) in a single framework, masking 50% of
patches in both views; this hybrid approach outperforms its
separate MAE and SimCLR components on transfer learn-
ing tasks while also being more efficient than pure con-
trastive pre-training [13]. Another notable approach, iBOT,
performs masked image prediction via self-distillation: a
ViT encoder is trained to predict the representations of an
online teacher network for masked patches (and class to-
kens), effectively unifying a generative masked loss with a
feature alignment objective and delivering state-of-the-art
results on ImageNet and dense prediction benchmarks [19].
These efforts demonstrate that combining reconstruction-
based and contrastive objectives can yield representations
with improved diversity and discrimination compared to ei-
ther alone.

Prior work has also explored incorporating class labels
or auxiliary information into masked autoencoder training
in supervised or semi-supervised settings. Multimodality-
guided Visual Pre-training (MVP) showed that using a pre-
trained multimodal encoder to provide semantic targets for

masked image modeling can significantly boost representa-
tion quality — specifically, MVP replaces the BERT-style to-
kenizer in a ViT MAE with the vision branch of CLIP (pre-
trained on image—text data), injecting high-level semantic
guidance into the reconstruction task and greatly improv-
ing downstream accuracy (e.g. +6.8 mloU on ADE20K
over prior MIM) [16]. In a semi-supervised context, Semi-
MAE introduced a parallel masked-autoencoder branch into
a standard ViT training pipeline: the model learns from un-
labeled images by reconstructing masked patches with a
high mask ratio, alongside a supervised loss on the small
labeled subset — an approach that achieved state-of-the-art
ImageNet results using only 10% of labels [17]. These tech-
niques illustrate the benefit of leveraging external signals
(whether from pretrained models or limited labels) to en-
rich the representations learned by masked autoencoders.

Self-Supervised Learning for fMRI. Functional neu-
roimaging data (fMRI) has recently become a testbed for
self-supervised learning methods inspired by computer vi-
sion. Some works have applied contrastive learning to
fMRI representations, finding that maximizing agreement
between different views or augmentations of brain data can
reduce overfitting and stabilize features in low-data regimes
[15]. On a larger scale, BrainLM was proposed as a foun-
dation model for fMRI, using a masked prediction objec-
tive on 6,700 hours of recordings to learn general-purpose
brain representations; notably, BrainL.M’s embeddings can
be fine-tuned to predict subject-specific clinical variables
(like age or mental health scores) and even used in a zero-
shot manner to detect intrinsic functional networks from
raw fMRI data [1]. Most recently, Brain-JEPA brought the
joint-embedding predictive architecture to fMRI: instead of
reconstructing input signals, it trains a vision-transformer
model to predict latent representations of masked-out spa-
tiotemporal brain patches, aided by brain-specific innova-
tions (a functional coordinate positional encoding and tai-
lored spatiotemporal masking) for better alignment with
neuroanatomy [4]. This JEPA-style approach achieves
state-of-the-art results on downstream brain activity predic-
tion tasks (covering demographics and clinical diagnoses)
and shows strong cross-cohort generalization, surpassing
earlier large-scale fMRI models.

Our contributions. While previous works have explored
combining contrastive and masked modeling objectives or
incorporating supervision in semi-supervised contexts, our
approach is distinct in several key ways. First, we intro-
duce a supervised contrastive loss directly into the MAE
pretraining stage, but apply it only to the visible patch to-
kens—preserving the integrity of the masked reconstruc-
tion task while softly guiding the global structure of the
representation space. However, unlike methods that rely



on full supervision or pretraining with auxiliary modalities
(e.g., MVP or Semi-MAE), our approach leverages coarse
labels (e.g., superclasses in image datasets or demographic
variables in fMRI) that are significantly easier and cheaper
to obtain than fine-grained annotations. We show that our
method, Adaptive Contrastive Masked Autoencoding (AC-
MAE), can inject minimal but meaningful supervision to
yield better-structured embeddings, especially in low-data
regimes, and improve downstream performance across both
vision and neuroimaging domains.

3. Method
3.1. Datasets

CIFAR-100 with Hierarchical Superclasses. We utilize
CIFAR-100 [!1] as our primary dataset, leveraging its
built-in hierarchical structure of 20 semantically meaning-
ful superclasses (e.g., “aquatic mammals,” ”large carni-
vores,” “’vehicles”). Each superclass contains 5 fine-grained
classes, providing natural groupings — this hierarchical
structure enables us to apply contrastive learning at the su-
perclass level while maintaining fine-grained reconstruction
targets. We apply standard data augmentation including
random horizontal flips, rotation (*15°), and color jittering
(brightness/contrast/saturation +0.2, hue +0.1) during train-

ing.

fMRI with Demographic Labels. We additionally eval-
uate our method on resting-state functional magnetic res-
onance imaging (rs-fMRI) data collected from the public
Human Connectome Project Young-Adults (HCP-YA) [14]
dataset. rs-fMRI measures spontaneous fluctuations in brain
oxygenation over time, producing 4D data volumes (3D
spatial brain scans over time) that serve as a proxy for brain
activity. These recordings are high-dimensional and noisy,
making them challenging for direct training with deep mod-
els. To reduce this complexity, we follow standard practice
and apply the DiFuMo atlas [3], which parcellates the brain
into 1024 distinct functional regions of interest (ROIs). We
then extract low-resolution time series for each ROI, result-
ing in 2D matrices (ROI x time) for each sample. For pre-
training, we sample 64-timestep segments from 1,004 train-
ing samples in HCP-YA, reserving 10% each for validation
and held-out testing. Importantly, each sample is associated
with auxiliary demographic labels (e.g., sex), which we use
here for both contrastive alignment and downstream evalu-
ation.

3.2. Architecture

CrossMAE Architecture. Our model extends the Cross-
Attention Masked Autoencoder (CrossMAE) architecture
[5], which differs from standard MAE in its decoder design.

While MAE concatenates learnable mask tokens and pro-
cesses them through heavy self-attention layers, CrossMAE
uses a single shared mask token that attends to frozen en-
coder features via lightweight cross-attention. This reduces
decoder parameters and computational cost while main-
taining reconstruction quality. We implement the optional
weighted feature map aggregation as recommended in the
original implementation, where decoder layers can attend
to weighted combinations of encoder features from differ-
ent depths, providing richer cross-attention interactions.

Contrastive Projection Head. We augment the Cross-
MAE encoder with a projection head for contrastive learn-
ing, consisting of two linear layers (embed_dim — em-
bed_dim — 256) with ReLLU activation. This head processes
the CLS token embeddings from the encoder to produce
normalized 256-dimensional representations for contrastive
learning, following established practices in self-supervised
learning. On top of these contrastive embeddings, we im-
plement a temperature-scaled supervised contrastive loss
that leverages superclass labels. For a batch of normalized
embeddings {z;}); with superclass labels {c;}/; where
K is the number of superclasses, we define positives for
sample i as P(i) = {j # i | ¢; = ¢;}. The contrastive loss
is:

exp(z, 2,/7)
Za;ﬁi eXp(Z;rZa/T)

1. 1
CSCL:_NZ|P(Z,)‘ Z log

pEP(i)

where 7 = 0.2 is the temperature parameter. This for-
mulation encourages embeddings from the same superclass
to be similar while pushing apart embeddings from different
superclasses.

Contrastive Loss Delay and Warmup. We implement a
ramped training schedule that accounts for the quality of
learned representations over time. The contrastive loss is
delayed for the first D epochs (typically D = E/4 where F
is the total number of epochs) to allow basic feature learning
through the masked autoencoding objective, then gradually
ramped up over W warmup epochs using a linear schedule:

0 ife<D
Ae = Amax G2 ifD<e<D+W
Amax ife>D+W

where Apax is the final contrastive weight, D is the de-
lay period, and W epochs is the warmup duration. This
schedule prevents applying strong alignment pressure to
early, noisy embeddings while allowing robust representa-
tion space development.



Data Fraction  Baseline (%) Contrastive (%) Gain (%)
0.01 27.39 +0.93 39.62+0.75 +12.23
0.02 41.84 +0.69 50.54 + 0.93 +8.70
0.05 54.80 £ 0.27 60.60 + 0.62 +5.80
0.10 63.00 £+ 0.25 66.55 +0.37 +3.55
0.20 70.44 + 0.15 72.02 +0.29 +1.58
0.50 78.50 + 0.17 78.41 £ 0.15 —0.09
1.00 83.81 +0.13 82.83 £ 0.25 —0.98

Table 1. Classification accuracy (%) on CIFAR-100 across varying fractions of labeled training data, comparing CrossMAE (baseline)
and our contrastive variant (AC-MAE). Each value reflects the best top-1 accuracy achieved after fine-tuning, averaged over 3 seeds
with standard deviation. AC-MAE provides significant gains in low-data regimes—most notably a +12.2% absolute improvement at
1% data—demonstrating that contrastive alignment with coarse supervision improves sample efficiency. At higher data fractions, gains
diminish and eventually reverse, suggesting that the benefits of contrastive pretraining are most prominent when labeled data is limited.

Combined Loss Function. The total training loss com-
bines reconstruction and contrastive objectives:

L= (1 - )\e)ﬁrec + )\eESCL

where L. is the standard MAE reconstruction loss
(MSE between predicted and actual pixel values, optionally
normalized per patch).

4. Experiments

Experimental Setup. We evaluate our approach on two
domains: image classification with CIFAR-100 and repre-
sentation learning on resting-state fMRI. For CIFAR-100,
we use the standard ViT-Base architecture with patch size
16, an embedding dimension of 384, 12 transformer en-
coder blocks, and 8 decoder blocks. For our contrastive
loss, we use a final contrastive weight Ap,x = 0.05, with
a contrastive delay D = 100 and contrastive warmup W =
100. For our fMRI data, we adopt a lightweight ViT vari-
ant with an embedding dimension of 128 and 4 encoder and
decoder layers, which we found more appropriate given the
limited dataset size. We additionally use a much higher con-
trastive weight of A\.x = 0.7, as we observed very quick
saturation of the reconstruction loss and therefore required
a stronger contrastive signal to align the embeddings to our
coarse labels.

In both settings, we randomly mask 75% of patch to-
kens and train using the Adam optimizer with a learning
rate of 1 x 10™%. We use a batch size of 128, with early
stopping based on validation loss. Our learning rate fol-
lows a warmup-stable-decay schedule (1000 steps of lin-
ear warmup and cosine decay), with a base learning rate of
1.5 x 10~ scaled by batch size, and we train for 100-400
epochs depending on the dataset size.

Fine-Tuning. For CIFAR-100, we fine-tune the entire
pretrained model by adding a single linear classification

head on top of the [CLS] token and train all parameters end-
to-end. For fMRI, we adopt a linear probing setup, freezing
the encoder and training a three-layer MLP (embed_dim =
512) on top of the [CLS] token embedding to predict binary
sex labels.

Baselines. We compare our proposed method (AC-
MAE) against a reconstruction-only CROSSMAE baseline.
Both models share the same encoder architecture, mask-
ing strategy, and training schedule in each domain to iso-
late the effect of our supervised contrastive component. For
CIFAR-100, both methods are pretrained without access
to fine class labels, using only superclasses for contrastive
alignment when applicable.

Metrics. For CIFAR-100, we report top-1 classification
accuracy for various subsets of the full dataset (1%, 2%,
5%, 10%, 20%, 50%, and 100%). For the binary fMRI sex
classification task, we use balanced accuracy to account for
class imbalance. In addition, we visualize the learned em-
beddings via t-SNE and report silhouette scores as a quan-
titative measure of cluster separation in embedding space.

5. Results

We evaluate AC-MAE against a reconstruction-only
CrossMAE baseline across both visual and neuroimaging
domains. On CIFAR-100, we assess transfer performance
via top-1 and top-5 classification accuracy after fine-tuning.
As shown in Table 1, contrastive pretraining significantly
boosts accuracy in low-data regimes: for instance, at 1%
of training data, AC-MAE improves top-1 accuracy by
+12.2%, with diminishing returns as data increases. On the
full dataset, baseline performance slightly surpasses AC-
MAE (83.81% vs. 82.83%), suggesting that contrastive
alignment primarily benefits sample-efficient learning. For
reference, one-shot and five-shot accuracy after fine-tuning
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Figure 2. AC-MAE improves semantic structure in the learned representations. We visualize t-SNE projections of embeddings from
CrossMAE (baseline) and AC-MAE on CIFAR-100, colored by either superclass (left) or fine-grained class (right). Top: Contrastive
projections (after the projection head) show that AC-MAE produces highly separable clusters aligned with superclass labels (0.1745
silhouette score versus -0.0381 for the baseline), even without using fine-grained class supervision. This structure is preserved down to
the fine-class level, suggesting improved global organization. Bottom: Encoder embeddings (pre-projection) show similar trends: AC-
MAE yields cleaner and more distinct clusters (0.0917 silhouette score versus -0.381 for the baseline), especially for superclasses, while
CrossMAE embeddings remain diffuse. These results highlight that lightly injecting coarse label information during pretraining encourages

more semantically meaningful representations.

on 100% of CIFAR-100 are 83.91% and 95.67% for AC-
MAE, compared to 85.34% and 96.31% for CrossMAE.

Model Balanced Accuracy (%) F1 Score (%)
Baseline (CLS) 59.13 61.55
AC-MAE (CLS) 96.83 97.14

Table 2. Test set performance on binary sex classification using
resting-state fMRI representations from CrossMAE (baseline) and
our proposed AC-MAE model. We report balanced accuracy and
F1 score using CLS token embeddings with a frozen encoder and
a lightweight MLP classifier (linear probing). AC-MAE achieves
a substantial improvement over the reconstruction-only baseline,
boosting balanced accuracy from 59.13% to 96.83% and F1 score
from 61.55% to 97.14%.

Beyond classification, we assess the semantic quality of
learned representations. Figure 2 visualizes t-SNE projec-
tions of embeddings for both methods. AC-MAE forms
tighter clusters aligned with superclass and class labels, re-
flected quantitatively by improved silhouette scores (con-
trastive: 0.1745 vs. baseline: -0.0381 for projection head;
0.0917 vs. -0.381 for encoder output).

On fMRI, we evaluate representation quality via sex
classification using linear probing (Figure 3). As shown in
Table 2, AC-MAE achieves a test F1 score of 97.14% and
balanced accuracy of 96.83% using CLS token representa-
tions, a dramatic improvement over the baseline (61.55%
F1, 59.13% balanced accuracy), and most notably, much
higher than prior models like BrainLM [!] or Brain-JEPA
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Figure 3. AC-MAE with fMRI. (a) We apply masked autoencoding to resting-state fMRI data by predicting randomly masked spatiotem-
poral patches. Simultaneously, we introduce a contrastive loss to encourage alignment of representations based on coarse demographic
attributes (e.g., sex). (b) This supervision robustly encourages the embedding space to reflect the demographic signal, as visualized by
a t-SNE projection colored by patients’ sex. (¢) While we evaluate the representations on sex classification via linear probing, the same
alignment strategy could support a range of downstream tasks involving clinical or demographic variables, including cognitive traits or

disease risk.

[4], though these results are not directly comparable due to
differences in cohort demographics (e.g., age). Though we
omit these results for brevity, this improvement holds even
when using average pooled embeddings. Figure 3b further
highlights this effect: the contrastive model’s embeddings
are clearly separable by sex in t-SNE space, demonstrating
successful alignment with demographic attributes through
our pretraining objective.

6. Discussion and Future Work

Conclusion.

We introduce AC-MAE, a simple yet effec-

tive extension of masked autoencoders that incorporates
weak supervision through a supervised contrastive loss dur-

ing pretraining. By aligning learned representations

with

coarse labels such as superclasses (in CIFAR-100) or demo-

These results collectively demonstrate that injecting
coarse supervision via contrastive loss during masked au-
toencoding enhances both the structure and downstream
utility of learned representations, especially under limited

data.

graphic attributes (in fMRI), our method improves down-
stream performance in low-data regimes and enhances the
semantic structure of the embedding space. On fMRI, con-
trastive alignment dramatically boosts linear probing accu-
racy for sex classification—achieving over 96% balanced
accuracy, compared to under 60% for the baseline. On
CIFAR-100, contrastive pretraining improves top-1 accu-
racy by over 12% when training on 1% of the data, high-
lighting its effectiveness for sample-efficient learning.



Limitations. Despite strong performance improvements
in our experiments, we could not evaluate our method on
richer datasets like ImageNet due to computational and time
constraints. Additionally, in our applications to fMRI, our
method currently relies on a single attribute (sex) for super-
vision and was only tested on relatively small datasets (es-
pecially compared to prior work in the field). A larger set
of both datasets and downstream tasks would allow us to
evaluate whether contrastive alignment generalizes beyond
sex classification, particularly to cognitive phenotypes and
neurological disease risk. Finally, while we demonstrate
generality across vision and neuroimaging domains, the full
potential of contrastive alignment for large-scale pretraining
remains underexplored.

Future Work. Future extensions may focus on refining
the contrastive objective to more directly shape embedding
geometry and semantic disentanglement. This includes ex-
ploring alternative contrastive formulations such as class-
conditional variants, introducing harder or curriculum-
based negative sampling strategies, and incorporating multi-
head projections for disentangling different attribute axes.

References

[1] J. O. Caro, A. H. d. O. Fonseca, C. Averill, S. A. Rizvi,
M. Rosati, J. L. Cross, P. Mittal, E. Zappala, D. Levine,
R. M. Dhodapkar, I. Han, A. Karbasi, C. G. Abdallah, and
D. van Dijk. BrainLM: A foundation model for brain activ-
ity recordings, 9 2023. 3, 6

[2] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A Simple
Framework for Contrastive Learning of Visual Representa-
tions. 2 2020. 1, 3

[3] K.Dadi, G. Varoquaux, A. Machlouzarides-Shalit, K. J. Gor-
golewski, D. Wassermann, B. Thirion, and A. Mensch. Fine-
grain atlases of functional modes for fMRI analysis. Neu-
rolmage, 221:117126, 11 2020. 4

[4] Z. Dong, R. Li, Y. Wu, T. T. Nguyen, J. S. X. Chong, F. Ji,
N. R. J. Tong, C. L. H. Chen, and J. H. Zhou. Brain-JEPA:
Brain Dynamics Foundation Model with Gradient Position-
ing and Spatiotemporal Masking. 9 2024. 3,7

[5] L.Fu, L. Lian, R. Wang, B. Shi, X. Wang, A. Yala, T. Darrell,
A. A. Efros, and K. Goldberg. Rethinking Patch Dependence
for Masked Autoencoders. 12024. 2, 4

[6] J.-B. Grill, FE. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo,
M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and
M. Valko. Bootstrap your own latent: A new approach to
self-supervised Learning. 6 2020. 3

[7] K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick.
Masked Autoencoders Are Scalable Vision Learners. 11
2021. 1,2

[8] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum
Contrast for Unsupervised Visual Representation Learning.
11 2019. 1,3

(9]

(10]

(11]

[12]

[13]

(14]

(15]

(16]
(17]

(18]

(19]

L. Jing and Y. Tian. Self-supervised Visual Feature Learning
with Deep Neural Networks: A Survey. 2 2019. 1

P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan. Supervised Con-
trastive Learning. 4 2020. 1, 3

A. Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. 2009. 4

J. Liu, X. Huang, J. Zheng, Y. Liu, and H. Li. MixMAE:
Mixed and Masked Autoencoder for Efficient Pretraining of
Hierarchical Vision Transformers. 5 2022. 2

S. Mishra, J. Robinson, H. Chang, D. Jacobs, A. Sarna,
A. Maschinot, and D. Krishnan. A simple, efficient and scal-
able contrastive masked autoencoder for learning visual rep-
resentations. 10 2022. 3

D. Van Essen, K. Ugurbil, E. Auerbach, D. Barch,
T. Behrens, R. Bucholz, A. Chang, L. Chen, M. Corbetta,
S. Curtiss, S. Della Penna, D. Feinberg, M. Glasser, N. Harel,
A. Heath, L. Larson-Prior, D. Marcus, G. Michalareas,
S. Moeller, R. Oostenveld, S. Petersen, F. Prior, B. Schlag-
gar, S. Smith, A. Snyder, J. Xu, and E. Yacoub. The Human
Connectome Project: A data acquisition perspective. Neu-
rolmage, 62(4):2222-2231, 10 2012. 4

X. Wang, L. Yao, I. Rekik, and Y. Zhang. Contrastive Graph
Learning for Population-based fMRI Classification. 3 2022.
3

L. Wei, L. Xie, W. Zhou, H. Li, and Q. Tian. MVP:
Multimodality-guided Visual Pre-training. 3 2022. 3

H. Yu, K. Zhao, and X. Xu. Semi-MAE: Masked Autoen-
coders for Semi-supervised Vision Transformers. 1 2023. 3
J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Bar-
low Twins: Self-Supervised Learning via Redundancy Re-
duction. 3 2021. 3

J. Zhou, C. Wei, H. Wang, W. Shen, C. Xie, A. Yuille, and
T. Kong. iBOT: Image BERT Pre-Training with Online Tok-
enizer. 11 2021. 3



